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Abstract

An algorithm of a computational and an experimental study of heat transfer in the vicinity of the critical points of a specimen in a high-
enthalpy dust-loaded flow are presented. The unknown parameters of the heat-balance equation at the external moving boundary of the
specimen are determined by solving an inverse problem of heat transfer by the method of iterative regularization. The results of experimental
data processing for the interaction of dust-loaded flows thighplane surfaces of cylindrical specimen are also presented.

0 2004 Elsevier SAS. All rights reserved.
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1. Introduction other fields. In analyzing the thermal operating conditions
of machines and units, the investigation of the mechanism
Identification of system parameters in the development of of thermal and thermomechiaal interaction of a high-
new materials and processes has been the prime goal in unrate dust loaded flow with the constructional material is
derstanding and defining the relevant systems. Under devel-an important problem. Heat flux measurements for the
opment is an approach to a study of hightemperature ther-purpose of solving such problems are currently based
mal processes based on the principles of identification of on the use of a calorimetric or the thin-wall method.
nonlinear systems with distributed parameters. One of the However, the basic deficiency of these methods is the
main difficulties is how to determine the coefficients of a requirement of conservation of either the calorimeter mass
model, which would simulate real processes. Models basedor the wall thickness during the course of the experiment.
on the method of solution of boundary inverse heat conduc- This significantly limits the measurement time, since with
tion problems are also widely used in the experimental inves- the prolonged action of a two-phase flow on a calorimeter or
tigations of the thermal interaction between solids and the on a thin wall erosion breakdown begins. As a result, such
environment. By solving such inverse problems, the bound- methods cannot easily take into account the influence on the
ary conditions and nonstationary temperature field are recon-heat transfer of such factors as the particles ejected from the
structed from the interior temperature distribution in solids. surface due to erosion, the change in the shape of the surface,
Presently, heat and mass transfer in heterogeneous medighe development of surface roughness, etc.
are being studied intensively P, This interest is associated The present work describes a method of processing and
with the important practical applications of the results of analyzing experimental data based on the methods of solu-
such investigations in aerospace technology, nuclear powettion of inverse heat transfergolems. It permits the investi-
engineering, turbine manufacture, chemical technology, andgation of two-phase heat transfer in surface erosion and the
creation of an approximate mathematical model, which take
msponding author. into acco_unt the influence Qf various determining factprs.
E-mail addresses: nenar@cosmos.com.ru (A.V. Nenarokomov), The solution of the problem is constructed as follows: First,
eugene.artioukhine@unfzomte.fr (E. Artioukhine). an approximate mathematical models are considered; this
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Nomenclature
b length ofaspecimen...................... m  Greek symbols
i ; 3. k-1
C volum_etnc heat capacity .. ........ -nd—>-K y descent step
f experimental measurements ............... K s measurements error 2 K
5 1 BITON o
G mass rate................ s Ky '39‘72 A thermal conductivity ............ wh—1.K-1
8 increment of unknown function.... ... .. i~ s temperature increment .................... K
J minimized (residual) functional........... K 4 deviation of measurements ................ K
M numbers of temperature measurements - time set
» 1€ . C
q heat flux ............................ W " adjointvariable .. ............... *m2-W-1
s iteration number .
T temperature .............oiiii e K Subscripts
u unknown (desired) function er related to erosion
u unknown (desired) parameters vector g related to gas
Vv velocity ... mec! m thermosensors number
X spatial coordinate......................... m p related to solid particles
X thermocouples position ................... m w related to external (exposed) surface
Model Jot Dust source Channels for Sensor body Model surface
thermocouples
Thermocouples Internal cavity Model Disposable fairing
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Fig. 2. Experimental module.

model takes into account the factors determining the two-
phase heat transfer and includes the corresponding unknown
characteristics. Then, usingetliesults of measurements for
the parameters of the incong flow, the heating and the en-
trainment of material in the experiments, the inverse prob- solid particles into account. The particle velocities are
lem for the determination of the unknown characteristics is calculated as described in [3]. In the calculations, the
solved the two-phase heménsfer identification. following assumptions are made: the gas is perfect, non-
The experiments are conducted in a gas-dynamic tubeviscous, and a nonconductor of heat; the gas viscosity and
specially designed for modeling dust-loaded flows in tubes. heat transfer are only taken into account in the action of
Solid 250 pm diameter particles are introduced into the the gas on the particle; the particles do not interact with one
gas flow through a special particle source (Fig. 1). The another and are spherical in form.
uniformity of the particle distribution over the flow cross- Experimental investigation of the thermal interaction of
section and the steady flow rate of the particles during the dust-loaded flow with the material is conducted at a
the experiment are ensured by a special supply system.special calorimetric module (Fig. 2). The module is fitted
A supersonic two-phase flow is formed in a nozzle, the with a disposable fairing to protect model surface from
profile of which ensures the most effective acceleration of the action of high-temperature two-phase flow during the
the particles. period when the gas-dynamic tube is reaching the steady
In the experiments, the mass concentration of particles operating conditions. After reaching the steady conditions
in the flow is about 1%; this means that both the volume and disposing of the deflector, the dust-loaded flow begins to
occupied by the particles arideir mechanical and thermal act on the model surface. There is then intensive heating and
effects on the gas may be neglected. Using well-known erosional destruction of the material. Since the experimental
numerical methods, the gas-dynamic parameters are thermodel and the sensor are made of the same material
determined over the whole flow region without taking the (copper), a uniform front over the whole erosional surface is
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Thermocouples

wheregs is the heat flux in the vicinity of the critical point.
The theoretical estimates g provide only tentative values
of this function [1]. Therefore, its value is usually estimated

~~ , experimentally. If the identification technique is used, the

>Q 5 < required parameter is estimated from the available experi-

1 mental information on the process under consideration. In

%, formulating the inverse problem, we assume that certain

%a information on the thermal statement of a specimen is avail-

able from the measurements, usually thermocouple nonsta-

tionary measurements at several internal points of the spec-

imen. A mathematical formation of such an inverse heat

conduction problem for a slab takes the following foente)

from mathematical model (1)—(4) is the desired boundary
Fig. 3. Model for calculations. condition. Besides, the results & temperature measure-

ments in the internal points are available:

ensured. The lateral surface of the sensor is both thermally

and electrically insulated. Thermocouples are made with a Texp(Xm, 7) = fi (7)

dispersed “hot” junction and installed over the length of  x, ¢ [0,6(0)], m=1,.... M (5)

the sensor at different distances from the heated surface.

This means that the change in the length of the sensor aé_” addition, it is necessary tol use experimental data on the
a result of erosional destruction may be determined from time dependence of the specimen lengith), as well as on
the instant, when the thermocouple readings cease. (Wherih€ parameters of the gas flow, and the diameter, velocity
the moving surface passes directly through the position of V» @nd mass raté ), of the solid particles to estimate the
the thermocouple hot junction, the readings are significantly influence of these parameters on the desired function.
changed.)

The structure of the specimen permits the use of a
one-dimensional mathematical model of thermal conduction 2- Inverse problem and its solution
(Fig. 3). The heat transfer inétspecimen is governed by the

bir)

b(0)

heat-conduction equation: One of the more promising directions in solving inverse
9T 3 aT heat conduction problems is to reduce them to extreme for-

C(T)— = —<A(T)—) mulations and apply numerical methods of the optimiza-
ot ox dx 1) tion theory. In the exact extreme statement, the definition

T=(x,7), x€(0,b(r)), T € (tmin, Tmax] of the functionu(¢) corresponds to the minimization of the

residual functionall (u(t), T (x, ©), fi(t), m=1,..., M)
characterizing a deviation of temperaturéx, t) calculated
for a certain density (t) from known temperatureg,, (t),
m=1,..., M in metric of spacé of the input data.

where
T

b(x) = b(tmin) — f Vertr

Tmin The problem of determining the functior(z) is solved
is the coordinate of the specimen’s external surface heatedoy means of minimization of the residual functional, which
by a two-phase flow and undergoing erosion, and is is the mean-square deviation of temperatures calculated at

the linear rate of erosion. The valuggin, andtmax are the the internal boundary using the mathematical model (1) to
times at which the experiment begins and ends. The initial (4) from the experimental temperatures:
temperature distributionnal the boundary andition at the

internal boundary are known, and take the form ‘= argun;bnj(u) ©
T (x, tmin) = To(x),  x € [0, b(tmin)] (2) ~ Where
T(0.7)=Ti(v), T € (Tmin, Tmaxd (3) uo

| Ty =Y /(T(Xm,r> ~ fu()?dr (6a)
At the external boundary (exposed to the dust-loaded flow) ]

Tmin

the following conditions are considered [4]:
is a functional in the space of functions(r) and its

—A(T)(£> =qg2(7) numerical value is the distance in the functional space
9x /4 Ly between the given and calculated temperatures. Two
<3_T) _ 9T @), 1) @) approaches are possible to solve the extreme problem (6):
ax / dx (1) the solution is sought in a finite dimensional sp&
g2(t)=u (parameters of the dustloaded flow or (2) the problem is solved in any appropriate functional

T € (Tmin, Tmax] spaceU [5]. In the latter case, the choice of spate
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depends on a priori information available aboutthe unknown  The gradient of the minimized functional is computed

characteristics. by using the solution of a boundary-value problem for an
To realize the first approach the unknown function can be adjoint variable. The formula for the gradient is

approximated in any form

Tmax

Np Ji=— / wM+1(b(r),r)g0k(r) dr, k=1,...,N, (10)
() =Y uppr(r) (7) i
k=1

where vy 1+1(b(7), 7) is the solution at poink = 0 of the
whereuy, k =1,..., N, are constant parameterg(z), following adjoint boundary-value problem, which has jumps
k=1,...,N, are a given system of basis functions for n its derivative at pointsX,,, m = 1, ..., M. Therefore, it

which different functions can be used; for example, poly- is convenient to consider a set &f + 1 problems withM
nomials, piecewise constant functiodssplines and others.  vyirtual internal boundaries:

The solution of problem (6) is obtained out with the
help of conjugate gradient methods for an unconstrained C(T)% __9 ()L(T)awm> + oh. OT dvm
T

minimization. The iterations are built in the following d dx dx d7" 9x dx
manner [3]: VUm =VYm(x,7), x € (Xp-1,Xn), T € [Tmin, Tmax)
A= s= L @ R S0 Nusi) @
, e VUm(x, Tmax) =0,  x € 0, b(tmax |,
.s=_J/(u)S+ s s—1
8 () ﬁg’io m=1,... ,M+1 (12)
k=1,...,Np, g =0 (8a)
B =) () Y /1Y s« et o
= - RNp RNP 0Ym+1
——=(b(1),7)=0, t€[tmin T 14
s> 1 ,3120 (8b) ax (() ) [Tmin, Tmax) (14)
Y (Xom, T) = Ym+1(Xin, T)

The last iteration number* is chosen according to the iter- . 1 1
ative residual principle. It is possible to suppose that meth- 8T € [zmin. Tmax). am =L...M (15)
ods enabling the effective initiation of the iterative process Vm (X, T) — A Vgnﬂ (X, T)

from a distant approximatian(z) and a sharp slowing down dx
in approaching the functional minimum would appear use- = 2(T (X, ) — fu (7))
ful when solving inverse heat conduction problems. Sucha ¢ ¢ (zin, tmaw, m=1,.... M (16)

method of damping the instability when specifying an ap- _ _ )

proximate solution for an ill-posed problem is based on “vis- The descent parameter in (8) is determined from the
cous” properties of numerical optimization algorithms. Itis condition

important to keep in mind that as the number of iterations s _ arg min J(@ +7g°) (17)
increases an inverse problem solution can worsen, gradually yer*t

losing its smooth character. Any waviness appearing i) where i = {u1,uz,...,un,} and g = {g1, 82, ..., 8N}
will gain strength as fast as the increasing fluctuating errors 5 |inear estimation is usped for the determination pof the
amplify the initial temperature data and this effect will be §egcent step. It can be calculated as

greater for larger distances between the boundary m(th

condition sought and the point of temperature measurement. M Tmax

For this, a suggestion arises to halt the iterative process at/" = (Z / (T (X T) = fn (D)) (X, T) df)

a certain iteration = s* without admitting a “shake up” of m=1rin
the solution. M Tmax -1

The main question in such an approach is to select a % (Z 92X, t)dr) (18)
halt criterion. A restriction to the residual level given as mmlg

an error&? including an error in temperature data and an
approximation error in the boundary-value heat conduction where ¥ (x, t) is the Frechet differential off'(x, ) at
problem can be used as such a condition. Thus, let us bindpoint u(z) and is the solution of the corresponding linear
the iterative sequence (8) according to the condition boundary-value problem for temperature increment at point

it NP s
5% < 52 u(t), when it is supposed thatudr) =), ”; g;ox (t) (look
J(@) <63 ) at(8a) and (17))
whereé? is the integral temperature-measurement error 0 8 Aaﬁ dr 9T do
M Tmax ot o 0x 0x d7T ox dx

aézzfan%df (9a) +(d2A<aT>2 d 927 olcar)l9

—— = R 19
d72\ 9x dT 9x2 dT ot (19)
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9 =0x,7), x€(0,b(1)), T € (Tmin, Tmaxl
l?(.x, Tmin) = Os X € [07 b(o)] (20)
1(0,7)=0, 7€ (Tmin, Tmaxl (21)
00 dr oT
—Aa(b(t), T) — Eaz?(b(r), 7)
N,
(22)

= Zg']ifﬂk(f)y T € (Tmin, Tmax|
k=1

When usingB-splines according to [5], the time interval is

divided intoN parts and a uniform grid is introduced

w={1 =1tmin+ kA7, k=-2,-1,0,...,N+3

AT = (Tmax— Tmin)/N} (23)
The function
BU—D = B(j_l)(rk, Thgly - vs Thtj» T)
kj o _j-1
= G0y : 22 (24)
—t @) (Ts)
where
wp = (T —1)(T — k1) -+ (T — Ty j) (25)
(tg — r){r_l = max{O, (tg — r)jil} (26)

is called B-spline of the(j — 1) degree relative to the
nodesrty, Txt1, .-
conditions:

u” (tmin) = u” (tmax) =0 (27)

Then, in the case of cubi®-splines(j — 1 = 3), the
unknown function is presented as

NP
() =y uppr(r) (28)
k=1
where
¢1(t) =2Bo(T + A7) + Bo(7)
¢2(t) = —Bo(T + A1) + Bo(F — A1)
(1) =Br-1(7), k=3,...,N, -2
@n,~1(t) = Bo(T — (N, —2)At) — Bo(T — N, A1)
N, (1) = Bo(T — (Np — D)AT) + 2Bo(T — N A1)
and
By (t) = Bo(T — kA7) (29)
T =T — Tmin
N,=N+1
Bo(v) = ((t +2A1)2 —4(r + AD)2 +6(0)2
—4(r — AD3 +(r —2A1)3)/(6A7%)  (30)

., Tk+j- When solving practical problems,
B-splines are used with the so-called “natural” boundary

The functionBy(t) has the property

>0,

BO(T):{ZO if —2t <t <21

if 7] > 27 (31)

This property makes the computational algorithm simpler.

In solving any particular inverse problem, the choice of
the number of parameters of the unknown characteristics
approximation¥, should be justified. As a rough approx-
imation, the heat conduction mathematical model used may
be inadequate with respect to the real process. As a result,
it becomes impossible to obtain a satisfactory correspon-
dence between the calculated and measured temperature val-
ues by means of changing the approximation parameters in
the process of residual functional minimization. The greater
the number of parameters, the better is the correspondence;
however, the sensitivity of the considered temperature val-
ues to small variations of the unknown parameters becomes
less.

Through numerical simulation, the following quite obvi-
ous approach has been proposed and substantiated:

(1) Begin with the minimum possible number of approx-
imating functionsN, (e.g., 1—for polynomials, 3—
for cubic B-splines with “natural” boundary conditions,
etc.).

(2) Solve the problem of unknown parameters determina-
tion through a method of iterative regularization;

(3) if in the iterative process we achieve an error level (9),
i.e., 8?, a procedure of parametric identification is com-
pleted; should the functional converge to valig:) >
8?, we must increase the number of approximation pa-
rameters and return to step 2.

3. Experimental validation

In implementing the algorithm described, the boundary-
value problems are solved nemically by finite differences
on an implicit four-point scheme. In the numerical solution,
the direct nonlinear problem is treated by iteration in the
coefficients. The approximation of the three boundary-value
problems is carried out on the one and the same difference
grid, making it possible to adéve error matching. Below,
we provide results from the processing the experimental data
obtained during the six tests at the experimental device. The
tests differed from each other by the mass-discharge values
of the solid phase. The particle diameter of the solid phase
was 250 um. The velocity of the solid particles Wés =
1083 msec 1, the gas velocity wag, = 1797 msec?, and
the mass flow rate of the gas was = 1490 kgm~2.sec™.
Variations of the lengths of the specimehsr), as a result
of erosional destruction in the course of the experiments
are shown in Fig. 4(a). The measured temperature at the
insolated internal (left) surface of specimen are presented
in Fig. 4(b). The remaining parameters (solid particles mass
rate and temperature of gas flow) are given in Table 1.
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Cylindrical specimens of radius 40 mm, prepared from in the vicinity of the critical point (center) of the model. The
copper, had different initial lengthig0) (Fig. 4), as well as  results of the thermocouple measurements in all specimens
the numbers and coordinates of the thermocouples installedare shown in Fig. 5. In solving the inverse problem, the
in the transducers (Table 1). While one of the thermocouplesexperimental data obtained in six tests were analyzed. The
was located on the left surfage = 0) and the remaining  temperatures calculated in these cases at the points of the
(one or two) at the internal points of the transducers, locatedthermocouple installations are also given in Fig. 5. The
estimations of the heat fluyx, and the temperature of the
external surfacel (b(r), t) as results of the experimental

b.m T.K data processing are presented in Fig. 6. The results from
i — the experimental data reveal a reasonably good agreement
ﬂkﬂ?ﬂ-&_*ﬂ 1100 . — ; between the measured and caltetitemperatures (Fig. 5).

- -0 4 -~
—— 3 9560 =1 5 '4-, yd
-0 4 4 7
-0= 5 y) /f Table 1
Q0I5 — i & 700 /8 Experimental data
:’"_B:u-\' L ] ’!] § No, of Gp ) L T, Ver ) L X1 Xo
- —Iﬁl- T o ,Ji’ tests  [kgm 2secl] [K]  [kg-m2secl] [m] [m]
it /’ 1 51 1451 251 Q0077 Q0083
7 2 6.9 1493 352 00049 -
o - e . - . T sec 3 0 1481 00093 -
: * : i d 4 7.2 1712 391 0023 -
Fig. 4. Erosional destruction of specimens (a) and temperature at left S 8 1779 414 00061 00075
i . ) 6 21 1820 00 0.0041 0005
(internal) boundaries (b) from six tests.
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Fig. 5. Experimental (1) and calculdtat the points of thermocouples ingd#ions (2) temperatures. (a) test(b) test 2, (c) test 3, (d) test 4,)(eest 5, (f)
test 6.
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R Wi 1+ 1 - the external-surface temperature does not reach the melting
st _::3 ./’ point of copper, which indicates mechanical erosion of the
0.10-10° _o_: S specimen material interacting with dust-loaded flow.
-5 /:r The results presented in this work should be considered to
7 900 —pe— & ! be another step toward the construction of adequate mathe-
006108 f; f f matical models that describe the interaction of materials with
700 2+ dust-loaded flows. Further parametric studies and tests on
/ﬂ/ ; more complicated cases remain to be done in the future with
560 preliminary experimental designs [6] to develop more com-
0.02-10° ﬁ plex mathematical models of heat transfer.
/
35 5 T, sec 3003.5 5 T, sec
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